(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
h(mark(X)) → mark(h(X))
g(mark(X1), X2) → mark(g(X1, X2))
f(mark(X1), X2) → mark(f(X1, X2))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
h(ok(X)) → ok(h(X))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(g(a, z0)) → c1(F(b, z0))
ACTIVE(f(z0, z0)) → c2(H(a))
ACTIVE(h(z0)) → c4(H(active(z0)), ACTIVE(z0))
ACTIVE(g(z0, z1)) → c5(G(active(z0), z1), ACTIVE(z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(g(a, z0)) → c1(F(b, z0))
ACTIVE(f(z0, z0)) → c2(H(a))
ACTIVE(h(z0)) → c4(H(active(z0)), ACTIVE(z0))
ACTIVE(g(z0, z1)) → c5(G(active(z0), z1), ACTIVE(z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c1, c2, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19
(3) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 2 of 17 dangling nodes:
ACTIVE(g(a, z0)) → c1(F(b, z0))
ACTIVE(f(z0, z0)) → c2(H(a))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(h(z0)) → c4(H(active(z0)), ACTIVE(z0))
ACTIVE(g(z0, z1)) → c5(G(active(z0), z1), ACTIVE(z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(h(z0)) → c4(H(active(z0)), ACTIVE(z0))
ACTIVE(g(z0, z1)) → c5(G(active(z0), z1), ACTIVE(z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
h(
z0)) →
c4(
H(
active(
z0)),
ACTIVE(
z0)) by
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(g(a, z0))) → c4(H(mark(f(b, z0))), ACTIVE(g(a, z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(a)) → c4(H(mark(b)), ACTIVE(a))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(g(z0, z1)) → c5(G(active(z0), z1), ACTIVE(z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(g(a, z0))) → c4(H(mark(f(b, z0))), ACTIVE(g(a, z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(a)) → c4(H(mark(b)), ACTIVE(a))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(g(z0, z1)) → c5(G(active(z0), z1), ACTIVE(z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(g(a, z0))) → c4(H(mark(f(b, z0))), ACTIVE(g(a, z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(a)) → c4(H(mark(b)), ACTIVE(a))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c4
(7) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(g(z0, z1)) → c5(G(active(z0), z1), ACTIVE(z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(g(a, z0))) → c4(H(mark(f(b, z0))), ACTIVE(g(a, z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(h(a)) → c1(ACTIVE(a))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(g(z0, z1)) → c5(G(active(z0), z1), ACTIVE(z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(g(a, z0))) → c4(H(mark(f(b, z0))), ACTIVE(g(a, z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(h(a)) → c1(ACTIVE(a))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c4, c1
(9) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(g(z0, z1)) → c5(G(active(z0), z1), ACTIVE(z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(g(a, z0))) → c4(H(mark(f(b, z0))), ACTIVE(g(a, z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(h(a)) → c1
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(g(z0, z1)) → c5(G(active(z0), z1), ACTIVE(z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(g(a, z0))) → c4(H(mark(f(b, z0))), ACTIVE(g(a, z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(h(a)) → c1
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c4, c1, c1
(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
g(
z0,
z1)) →
c5(
G(
active(
z0),
z1),
ACTIVE(
z0)) by
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(a, z0), x1)) → c5(G(mark(f(b, z0)), x1), ACTIVE(g(a, z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(a, x1)) → c5(G(mark(b), x1), ACTIVE(a))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(g(a, z0))) → c4(H(mark(f(b, z0))), ACTIVE(g(a, z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(h(a)) → c1
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(a, z0), x1)) → c5(G(mark(f(b, z0)), x1), ACTIVE(g(a, z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(a, x1)) → c5(G(mark(b), x1), ACTIVE(a))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(g(a, z0))) → c4(H(mark(f(b, z0))), ACTIVE(g(a, z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(h(a)) → c1
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(a, z0), x1)) → c5(G(mark(f(b, z0)), x1), ACTIVE(g(a, z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(a, x1)) → c5(G(mark(b), x1), ACTIVE(a))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c4, c1, c1, c5
(13) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 28 dangling nodes:
ACTIVE(h(a)) → c1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(g(a, z0))) → c4(H(mark(f(b, z0))), ACTIVE(g(a, z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(a, z0), x1)) → c5(G(mark(f(b, z0)), x1), ACTIVE(g(a, z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(a, x1)) → c5(G(mark(b), x1), ACTIVE(a))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(g(a, z0))) → c4(H(mark(f(b, z0))), ACTIVE(g(a, z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(a, z0), x1)) → c5(G(mark(f(b, z0)), x1), ACTIVE(g(a, z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(a, x1)) → c5(G(mark(b), x1), ACTIVE(a))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c4, c1, c5
(15) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(g(a, x1)) → c2(ACTIVE(a))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(g(a, x1)) → c2(ACTIVE(a))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c4, c1, c5, c2
(17) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(g(a, x1)) → c2
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(f(z0, z1)) → c6(F(active(z0), z1), ACTIVE(z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(g(a, x1)) → c2
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c4, c1, c5, c2, c2
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
f(
z0,
z1)) →
c6(
F(
active(
z0),
z1),
ACTIVE(
z0)) by
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(a, z0), x1)) → c6(F(mark(f(b, z0)), x1), ACTIVE(g(a, z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(a, x1)) → c6(F(mark(b), x1), ACTIVE(a))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(g(a, x1)) → c2
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(a, z0), x1)) → c6(F(mark(f(b, z0)), x1), ACTIVE(g(a, z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(a, x1)) → c6(F(mark(b), x1), ACTIVE(a))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(g(a, x1)) → c2
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(a, z0), x1)) → c6(F(mark(f(b, z0)), x1), ACTIVE(g(a, z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(a, x1)) → c6(F(mark(b), x1), ACTIVE(a))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c4, c1, c5, c2, c2, c6
(21) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 36 dangling nodes:
ACTIVE(g(a, x1)) → c2
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(a, z0), x1)) → c6(F(mark(f(b, z0)), x1), ACTIVE(g(a, z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(a, x1)) → c6(F(mark(b), x1), ACTIVE(a))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(a, z0), x1)) → c6(F(mark(f(b, z0)), x1), ACTIVE(g(a, z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(a, x1)) → c6(F(mark(b), x1), ACTIVE(a))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c4, c1, c5, c2, c6
(23) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
ACTIVE(f(a, x1)) → c3(ACTIVE(a))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
ACTIVE(f(a, x1)) → c3(ACTIVE(a))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c4, c1, c5, c2, c6, c3
(25) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
ACTIVE(f(a, x1)) → c3
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(h(z0)) → c13(H(proper(z0)), PROPER(z0))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
ACTIVE(f(a, x1)) → c3
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c4, c1, c5, c2, c6, c3, c3
(27) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
h(
z0)) →
c13(
H(
proper(
z0)),
PROPER(
z0)) by
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(a)) → c13(H(ok(a)), PROPER(a))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(b)) → c13(H(ok(b)), PROPER(b))
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
ACTIVE(f(a, x1)) → c3
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(a)) → c13(H(ok(a)), PROPER(a))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(b)) → c13(H(ok(b)), PROPER(b))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
ACTIVE(f(a, x1)) → c3
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(a)) → c13(H(ok(a)), PROPER(a))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(b)) → c13(H(ok(b)), PROPER(b))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c14, c16, c18, c19, c4, c1, c5, c2, c6, c3, c3, c13
(29) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 41 dangling nodes:
ACTIVE(f(a, x1)) → c3
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(a)) → c13(H(ok(a)), PROPER(a))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(b)) → c13(H(ok(b)), PROPER(b))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(a)) → c13(H(ok(a)), PROPER(a))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(b)) → c13(H(ok(b)), PROPER(b))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c14, c16, c18, c19, c4, c1, c5, c2, c6, c3, c13
(31) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(a)) → c15(PROPER(a))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(h(b)) → c15(PROPER(b))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(a)) → c15(PROPER(a))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(h(b)) → c15(PROPER(b))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c14, c16, c18, c19, c4, c1, c5, c2, c6, c3, c13, c15
(33) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(h(a)) → c15
PROPER(h(b)) → c15
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(g(z0, z1)) → c14(G(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(h(a)) → c15
PROPER(h(b)) → c15
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c14, c16, c18, c19, c4, c1, c5, c2, c6, c3, c13, c15, c15
(35) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
g(
z0,
z1)) →
c14(
G(
proper(
z0),
proper(
z1)),
PROPER(
z0),
PROPER(
z1)) by
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0), PROPER(a))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0), PROPER(b))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(a), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(b), PROPER(x1))
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(h(a)) → c15
PROPER(h(b)) → c15
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0), PROPER(a))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0), PROPER(b))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(a), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(b), PROPER(x1))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(h(a)) → c15
PROPER(h(b)) → c15
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0), PROPER(a))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0), PROPER(b))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(a), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(b), PROPER(x1))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c16, c18, c19, c4, c1, c5, c2, c6, c3, c13, c15, c15, c14
(37) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 2 of 51 dangling nodes:
PROPER(h(b)) → c15
PROPER(h(a)) → c15
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0), PROPER(a))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0), PROPER(b))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(a), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(b), PROPER(x1))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0), PROPER(a))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0), PROPER(b))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(a), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(b), PROPER(x1))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c16, c18, c19, c4, c1, c5, c2, c6, c3, c13, c15, c14
(39) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
PROPER(f(z0, z1)) → c16(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c16, c18, c19, c4, c1, c5, c2, c6, c3, c13, c15, c14, c14
(41) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
f(
z0,
z1)) →
c16(
F(
proper(
z0),
proper(
z1)),
PROPER(
z0),
PROPER(
z1)) by
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0), PROPER(a))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0), PROPER(b))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(a), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(b), PROPER(x1))
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0), PROPER(a))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0), PROPER(b))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(a), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(b), PROPER(x1))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0), PROPER(a))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0), PROPER(b))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(a), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(b), PROPER(x1))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, TOP, PROPER
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c18, c19, c4, c1, c5, c2, c6, c3, c13, c15, c14, c14, c16
(43) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(x1))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(mark(z0)) → c18(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(x1))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, TOP, PROPER
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c18, c19, c4, c1, c5, c2, c6, c3, c13, c15, c14, c14, c16, c16
(45) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c18(
TOP(
proper(
z0)),
PROPER(
z0)) by
TOP(mark(h(z0))) → c18(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(g(z0, z1))) → c18(TOP(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
TOP(mark(a)) → c18(TOP(ok(a)), PROPER(a))
TOP(mark(f(z0, z1))) → c18(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(b)) → c18(TOP(ok(b)), PROPER(b))
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(x1))
TOP(mark(h(z0))) → c18(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(g(z0, z1))) → c18(TOP(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
TOP(mark(a)) → c18(TOP(ok(a)), PROPER(a))
TOP(mark(f(z0, z1))) → c18(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(b)) → c18(TOP(ok(b)), PROPER(b))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(x1))
TOP(mark(h(z0))) → c18(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(g(z0, z1))) → c18(TOP(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
TOP(mark(a)) → c18(TOP(ok(a)), PROPER(a))
TOP(mark(f(z0, z1))) → c18(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(b)) → c18(TOP(ok(b)), PROPER(b))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, TOP, PROPER
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c19, c4, c1, c5, c2, c6, c3, c13, c15, c14, c14, c16, c16, c18
(47) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(x1))
TOP(mark(h(z0))) → c18(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(g(z0, z1))) → c18(TOP(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
TOP(mark(f(z0, z1))) → c18(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(a)) → c18(TOP(ok(a)))
TOP(mark(b)) → c18(TOP(ok(b)))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(x1))
TOP(mark(h(z0))) → c18(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(g(z0, z1))) → c18(TOP(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
TOP(mark(f(z0, z1))) → c18(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(a)) → c18(TOP(ok(a)))
TOP(mark(b)) → c18(TOP(ok(b)))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, TOP, PROPER
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c19, c4, c1, c5, c2, c6, c3, c13, c15, c14, c14, c16, c16, c18, c18
(49) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(a)) → c18(TOP(ok(a)))
We considered the (Usable) Rules:
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
And the Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(x1))
TOP(mark(h(z0))) → c18(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(g(z0, z1))) → c18(TOP(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
TOP(mark(f(z0, z1))) → c18(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(a)) → c18(TOP(ok(a)))
TOP(mark(b)) → c18(TOP(ok(b)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1, x2)) = 0
POL(G(x1, x2)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = x1
POL(a) = [4]
POL(active(x1)) = 0
POL(b) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c15(x1)) = x1
POL(c16(x1, x2)) = x1 + x2
POL(c16(x1, x2, x3)) = x1 + x2 + x3
POL(c18(x1)) = x1
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(f(x1, x2)) = 0
POL(g(x1, x2)) = 0
POL(h(x1)) = 0
POL(mark(x1)) = x1
POL(ok(x1)) = 0
POL(proper(x1)) = 0
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(x1))
TOP(mark(h(z0))) → c18(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(g(z0, z1))) → c18(TOP(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
TOP(mark(f(z0, z1))) → c18(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(a)) → c18(TOP(ok(a)))
TOP(mark(b)) → c18(TOP(ok(b)))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(x1))
TOP(mark(h(z0))) → c18(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(g(z0, z1))) → c18(TOP(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
TOP(mark(f(z0, z1))) → c18(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(b)) → c18(TOP(ok(b)))
K tuples:
TOP(mark(a)) → c18(TOP(ok(a)))
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, TOP, PROPER
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c19, c4, c1, c5, c2, c6, c3, c13, c15, c14, c14, c16, c16, c18, c18
(51) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(b)) → c18(TOP(ok(b)))
We considered the (Usable) Rules:
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
And the Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(x1))
TOP(mark(h(z0))) → c18(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(g(z0, z1))) → c18(TOP(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
TOP(mark(f(z0, z1))) → c18(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(a)) → c18(TOP(ok(a)))
TOP(mark(b)) → c18(TOP(ok(b)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1, x2)) = 0
POL(G(x1, x2)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = x1
POL(a) = [1]
POL(active(x1)) = x1
POL(b) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c15(x1)) = x1
POL(c16(x1, x2)) = x1 + x2
POL(c16(x1, x2, x3)) = x1 + x2 + x3
POL(c18(x1)) = x1
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(f(x1, x2)) = [1]
POL(g(x1, x2)) = [1]
POL(h(x1)) = [1]
POL(mark(x1)) = [1]
POL(ok(x1)) = x1
POL(proper(x1)) = 0
(52) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(x1))
TOP(mark(h(z0))) → c18(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(g(z0, z1))) → c18(TOP(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
TOP(mark(f(z0, z1))) → c18(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(a)) → c18(TOP(ok(a)))
TOP(mark(b)) → c18(TOP(ok(b)))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(ok(z0)) → c19(TOP(active(z0)), ACTIVE(z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(x1))
TOP(mark(h(z0))) → c18(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(g(z0, z1))) → c18(TOP(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
TOP(mark(f(z0, z1))) → c18(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
K tuples:
TOP(mark(a)) → c18(TOP(ok(a)))
TOP(mark(b)) → c18(TOP(ok(b)))
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, TOP, PROPER
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c19, c4, c1, c5, c2, c6, c3, c13, c15, c14, c14, c16, c16, c18, c18
(53) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
ok(
z0)) →
c19(
TOP(
active(
z0)),
ACTIVE(
z0)) by
TOP(ok(h(z0))) → c19(TOP(mark(g(z0, z0))), ACTIVE(h(z0)))
TOP(ok(g(a, z0))) → c19(TOP(mark(f(b, z0))), ACTIVE(g(a, z0)))
TOP(ok(f(z0, z0))) → c19(TOP(mark(h(a))), ACTIVE(f(z0, z0)))
TOP(ok(a)) → c19(TOP(mark(b)), ACTIVE(a))
TOP(ok(h(z0))) → c19(TOP(h(active(z0))), ACTIVE(h(z0)))
TOP(ok(g(z0, z1))) → c19(TOP(g(active(z0), z1)), ACTIVE(g(z0, z1)))
TOP(ok(f(z0, z1))) → c19(TOP(f(active(z0), z1)), ACTIVE(f(z0, z1)))
(54) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(x1))
TOP(mark(h(z0))) → c18(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(g(z0, z1))) → c18(TOP(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
TOP(mark(f(z0, z1))) → c18(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(a)) → c18(TOP(ok(a)))
TOP(mark(b)) → c18(TOP(ok(b)))
TOP(ok(h(z0))) → c19(TOP(mark(g(z0, z0))), ACTIVE(h(z0)))
TOP(ok(g(a, z0))) → c19(TOP(mark(f(b, z0))), ACTIVE(g(a, z0)))
TOP(ok(f(z0, z0))) → c19(TOP(mark(h(a))), ACTIVE(f(z0, z0)))
TOP(ok(a)) → c19(TOP(mark(b)), ACTIVE(a))
TOP(ok(h(z0))) → c19(TOP(h(active(z0))), ACTIVE(h(z0)))
TOP(ok(g(z0, z1))) → c19(TOP(g(active(z0), z1)), ACTIVE(g(z0, z1)))
TOP(ok(f(z0, z1))) → c19(TOP(f(active(z0), z1)), ACTIVE(f(z0, z1)))
S tuples:
ACTIVE(h(z0)) → c(G(z0, z0))
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(x1))
TOP(mark(h(z0))) → c18(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(g(z0, z1))) → c18(TOP(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
TOP(mark(f(z0, z1))) → c18(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(ok(h(z0))) → c19(TOP(mark(g(z0, z0))), ACTIVE(h(z0)))
TOP(ok(g(a, z0))) → c19(TOP(mark(f(b, z0))), ACTIVE(g(a, z0)))
TOP(ok(f(z0, z0))) → c19(TOP(mark(h(a))), ACTIVE(f(z0, z0)))
TOP(ok(a)) → c19(TOP(mark(b)), ACTIVE(a))
TOP(ok(h(z0))) → c19(TOP(h(active(z0))), ACTIVE(h(z0)))
TOP(ok(g(z0, z1))) → c19(TOP(g(active(z0), z1)), ACTIVE(g(z0, z1)))
TOP(ok(f(z0, z1))) → c19(TOP(f(active(z0), z1)), ACTIVE(f(z0, z1)))
K tuples:
TOP(mark(a)) → c18(TOP(ok(a)))
TOP(mark(b)) → c18(TOP(ok(b)))
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
ACTIVE, H, G, F, PROPER, TOP
Compound Symbols:
c, c7, c8, c9, c10, c11, c12, c4, c1, c5, c2, c6, c3, c13, c15, c14, c14, c16, c16, c18, c18, c19
(55) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(h(z0)) → c(G(z0, z0))
ACTIVE(h(h(z0))) → c4(H(mark(g(z0, z0))), ACTIVE(h(z0)))
ACTIVE(h(f(z0, z0))) → c4(H(mark(h(a))), ACTIVE(f(z0, z0)))
ACTIVE(h(h(z0))) → c4(H(h(active(z0))), ACTIVE(h(z0)))
ACTIVE(h(g(z0, z1))) → c4(H(g(active(z0), z1)), ACTIVE(g(z0, z1)))
ACTIVE(h(f(z0, z1))) → c4(H(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(h(a)) → c1(H(mark(b)))
ACTIVE(g(h(z0), x1)) → c5(G(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(f(z0, z0), x1)) → c5(G(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(g(h(z0), x1)) → c5(G(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(g(g(z0, z1), x1)) → c5(G(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(g(f(z0, z1), x1)) → c5(G(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(h(g(a, z0))) → c2(H(mark(f(b, z0))))
ACTIVE(h(g(a, z0))) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(g(a, z0), x1)) → c2(G(mark(f(b, z0)), x1))
ACTIVE(g(g(a, z0), x1)) → c2(ACTIVE(g(a, z0)))
ACTIVE(g(a, x1)) → c2(G(mark(b), x1))
ACTIVE(f(h(z0), x1)) → c6(F(mark(g(z0, z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(f(z0, z0), x1)) → c6(F(mark(h(a)), x1), ACTIVE(f(z0, z0)))
ACTIVE(f(h(z0), x1)) → c6(F(h(active(z0)), x1), ACTIVE(h(z0)))
ACTIVE(f(g(z0, z1), x1)) → c6(F(g(active(z0), z1), x1), ACTIVE(g(z0, z1)))
ACTIVE(f(f(z0, z1), x1)) → c6(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(a, z0), x1)) → c3(F(mark(f(b, z0)), x1))
ACTIVE(f(g(a, z0), x1)) → c3(ACTIVE(g(a, z0)))
ACTIVE(f(a, x1)) → c3(F(mark(b), x1))
PROPER(h(h(z0))) → c13(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(g(z0, z1))) → c13(H(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
PROPER(h(f(z0, z1))) → c13(H(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(h(a)) → c15(H(ok(a)))
PROPER(h(b)) → c15(H(ok(b)))
PROPER(g(x0, h(z0))) → c14(G(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(g(x0, g(z0, z1))) → c14(G(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(g(x0, f(z0, z1))) → c14(G(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(g(h(z0), x1)) → c14(G(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(g(g(z0, z1), x1)) → c14(G(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(g(f(z0, z1), x1)) → c14(G(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(g(x0, a)) → c14(G(proper(x0), ok(a)), PROPER(x0))
PROPER(g(x0, b)) → c14(G(proper(x0), ok(b)), PROPER(x0))
PROPER(g(a, x1)) → c14(G(ok(a), proper(x1)), PROPER(x1))
PROPER(g(b, x1)) → c14(G(ok(b), proper(x1)), PROPER(x1))
PROPER(f(x0, h(z0))) → c16(F(proper(x0), h(proper(z0))), PROPER(x0), PROPER(h(z0)))
PROPER(f(x0, g(z0, z1))) → c16(F(proper(x0), g(proper(z0), proper(z1))), PROPER(x0), PROPER(g(z0, z1)))
PROPER(f(x0, f(z0, z1))) → c16(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(h(z0), x1)) → c16(F(h(proper(z0)), proper(x1)), PROPER(h(z0)), PROPER(x1))
PROPER(f(g(z0, z1), x1)) → c16(F(g(proper(z0), proper(z1)), proper(x1)), PROPER(g(z0, z1)), PROPER(x1))
PROPER(f(f(z0, z1), x1)) → c16(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(x0, a)) → c16(F(proper(x0), ok(a)), PROPER(x0))
PROPER(f(x0, b)) → c16(F(proper(x0), ok(b)), PROPER(x0))
PROPER(f(a, x1)) → c16(F(ok(a), proper(x1)), PROPER(x1))
PROPER(f(b, x1)) → c16(F(ok(b), proper(x1)), PROPER(x1))
TOP(mark(h(z0))) → c18(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(g(z0, z1))) → c18(TOP(g(proper(z0), proper(z1))), PROPER(g(z0, z1)))
TOP(mark(f(z0, z1))) → c18(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(ok(h(z0))) → c19(TOP(mark(g(z0, z0))), ACTIVE(h(z0)))
TOP(ok(g(a, z0))) → c19(TOP(mark(f(b, z0))), ACTIVE(g(a, z0)))
TOP(ok(f(z0, z0))) → c19(TOP(mark(h(a))), ACTIVE(f(z0, z0)))
TOP(ok(h(z0))) → c19(TOP(h(active(z0))), ACTIVE(h(z0)))
TOP(ok(g(z0, z1))) → c19(TOP(g(active(z0), z1)), ACTIVE(g(z0, z1)))
TOP(ok(f(z0, z1))) → c19(TOP(f(active(z0), z1)), ACTIVE(f(z0, z1)))
(56) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(mark(a)) → c18(TOP(ok(a)))
TOP(mark(b)) → c18(TOP(ok(b)))
TOP(ok(a)) → c19(TOP(mark(b)), ACTIVE(a))
S tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
TOP(ok(a)) → c19(TOP(mark(b)), ACTIVE(a))
K tuples:
TOP(mark(a)) → c18(TOP(ok(a)))
TOP(mark(b)) → c18(TOP(ok(b)))
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
H, G, F, TOP
Compound Symbols:
c7, c8, c9, c10, c11, c12, c18, c19
(57) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 3 of 9 dangling nodes:
TOP(ok(a)) → c19(TOP(mark(b)), ACTIVE(a))
TOP(mark(b)) → c18(TOP(ok(b)))
TOP(mark(a)) → c18(TOP(ok(a)))
(58) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
S tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
K tuples:none
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
H, G, F
Compound Symbols:
c7, c8, c9, c10, c11, c12
(59) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^3))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(ok(z0), ok(z1)) → c10(G(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = 0
POL(G(x1, x2)) = x1·x2 + x12 + x12·x2
POL(H(x1)) = 0
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = [1] + x1
(60) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
S tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
K tuples:
G(ok(z0), ok(z1)) → c10(G(z0, z1))
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
H, G, F
Compound Symbols:
c7, c8, c9, c10, c11, c12
(61) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(ok(z0), ok(z1)) → c12(F(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [3]x2 + [3]x22
POL(G(x1, x2)) = 0
POL(H(x1)) = 0
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = 0
POL(ok(x1)) = [3] + x1
(62) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
S tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
K tuples:
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
H, G, F
Compound Symbols:
c7, c8, c9, c10, c11, c12
(63) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
H(ok(z0)) → c8(H(z0))
We considered the (Usable) Rules:none
And the Tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [4]x1 + [2]x2
POL(G(x1, x2)) = [3]x1
POL(H(x1)) = [3]x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [1] + x1
(64) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
S tuples:
H(mark(z0)) → c7(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
K tuples:
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
H(ok(z0)) → c8(H(z0))
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
H, G, F
Compound Symbols:
c7, c8, c9, c10, c11, c12
(65) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
H(mark(z0)) → c7(H(z0))
F(mark(z0), z1) → c11(F(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [4]x1 + [3]x2
POL(G(x1, x2)) = [5]x2
POL(H(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
(66) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
S tuples:
G(mark(z0), z1) → c9(G(z0, z1))
K tuples:
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
H(ok(z0)) → c8(H(z0))
H(mark(z0)) → c7(H(z0))
F(mark(z0), z1) → c11(F(z0, z1))
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
H, G, F
Compound Symbols:
c7, c8, c9, c10, c11, c12
(67) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(mark(z0), z1) → c9(G(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [2]x2
POL(G(x1, x2)) = x1 + [2]x2
POL(H(x1)) = 0
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
(68) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(h(z0)) → mark(g(z0, z0))
active(g(a, z0)) → mark(f(b, z0))
active(f(z0, z0)) → mark(h(a))
active(a) → mark(b)
active(h(z0)) → h(active(z0))
active(g(z0, z1)) → g(active(z0), z1)
active(f(z0, z1)) → f(active(z0), z1)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(h(z0)) → h(proper(z0))
proper(g(z0, z1)) → g(proper(z0), proper(z1))
proper(a) → ok(a)
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(b) → ok(b)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
H(mark(z0)) → c7(H(z0))
H(ok(z0)) → c8(H(z0))
G(mark(z0), z1) → c9(G(z0, z1))
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(mark(z0), z1) → c11(F(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
S tuples:none
K tuples:
G(ok(z0), ok(z1)) → c10(G(z0, z1))
F(ok(z0), ok(z1)) → c12(F(z0, z1))
H(ok(z0)) → c8(H(z0))
H(mark(z0)) → c7(H(z0))
F(mark(z0), z1) → c11(F(z0, z1))
G(mark(z0), z1) → c9(G(z0, z1))
Defined Rule Symbols:
active, h, g, f, proper, top
Defined Pair Symbols:
H, G, F
Compound Symbols:
c7, c8, c9, c10, c11, c12
(69) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(70) BOUNDS(O(1), O(1))